INVERSION OF FRUSTA AS IMPACT ENERGY ABSORBERS

Aljawi, A.A.N. and Alghamdi, A.A.

Department of Mechanical Engineering, King Abdulaziz University, P.O. Box 9027, Jeddah 21413, Saudi Arabia

ABSTRACT

In this paper a noval crushing mode of frusts is presented for the first time. The details of the platfic inversion of frusts as energy absorbers are given. The deformation modes of capped frustum are investigated both experimentally and analytically. An Explicit version of ABAQUS 5.7-3 finite element (FE) code is used for computing and describing the proposed deformation mode. Good agreement is obtained between the experimental results and the FE predictions.

KEYWORDS

Energy Absorber, Frusta Inversion, Finite Element.

1. INTRODUCTION

Energy absorbers are systems that convert kinetic energy into other forms of energy, such as elastic strain energy in solids and plastic deformation energy in deformable solids. The convented converg may be revensible, as in pressure energy in compressible flaids, and clastic strain energy in solids, or inversible, as in plastic deformation. The process of conversion for plastic deformation cheened, among other factors, or the magnitude and matriod of application of loads, transmission rates, deformation displacement patterns and material

The perdominant domain of applications of collapsible energy absorbers is that of crash protection. Such systems are installed in high-risk environments with potential injury to humans or desarge to properly. The aim is to reisisinize the risk of fireign or darange ty controlling the deceleration pulse during impact. This is achieved by extending the period of dissipation of the kinetic energy of the system over a finite period of time. Cushioning devices on vehicle bumpers, crash retards in emergency systems of little and crash barriers used as

Familiar plantic deformable energy absorber units include cylindrical shells [2], wood-filled tubes [3], four-filled columns [4], sead-filled tubes [5], FVC shells [6], sube inversions [7] and tubolar elements [5]. The active absorbing element of an energy absorbior system on summe several common thappes such as circular tubes [8], square tubes [9], malicomer metal columns [10], frusts [11] and ends [12]. Activamentical and circular shapes provide portages the wident maps of all choices for use as absorbing elements because of their favorable plastic behavior under axial forces, as well as their common occurrence as structural elements.

In this paper the selected absorber has a truscated capped frustum shape. Frusta are employed over a wide range of applications, especially in the domains of aerospace and armaments. Common examples cours in the nose comes of missiles and aircraft.

2. AXIAL LOADING OF TUBULAR COMPONENTS

The study of deformation of tabular energy absorbers in general falls into two main categories, lateral, and axial loading Investigations often lead to accounting for geometrical charges, instensions between modes of collapse, as well as strain hardening and strain rate effects. Johnson and Reid [1] identified the dominant modes of deformation in simple structural elements in the form of circular and hexaponal cross-section tabes when these elements were subjected to various forms of quasi-static loading. They described the load-deformation characteristics of a number of these elements. This—walled absorbers having symmetrical cross-sections may collapse in occentries or disastered mode when subjected to main loads. The collapsing of such components by splitting or by inversion is also reported [9].

The behavior of thin tubes (large diameter D' thickness t), with circular and square cross accions, when subjected to axial loads, has been of particular interest since the pioneering works of Alexander [2] In five televalur thinks under axial compression are reported to be the most prevalent components in energy absorber systems. This is because the olevalur sube-provides a reasonably constant operating from Furthermore, circular tubes have comparatively high energy absorbing capacities, and stroke length per unit muss. In comparing lateral with axial compression, the axial backling, mode has a specific energy absorbing capacity, which is approximately ten times that of the axian tube when compressed to participate in the absorption of energy by plantic work in acid loading.

2.1 Thin-Walled Frusta

Frusta are truncated circular cones, see Fig. 1. Literature on the utilization of frusta for dissipation of energy is meager. Fordethwaite and Mills [11] first studied the frustum in this context in 1970. In their study of axial crushing of conical shells they used Alexander's extensible collapse analysis [2] to predict the mean crushing force for the concertina mode of deformation for frusts made of mild steel. Manualis et al. [13] investigated experimentally the crambling of aluminum frusts when subjected to axial compression load under quasi-attric conditions. They proposed empirical relationships for both the concertina and the dismond modes of deformation. Mamalis et al. [14] extended their experimental study to include mild steel at elevated strain rates. They concluded that the deformation modes of frusta could be classified as a) concertina, b) concerting-diamond, and c) diamond. Marsalis and associates [15] refined the work of Postlethwaits and Mills [11] in using the extensible collapse analysis for predicting the mean crushing load, and fair agreement with the experimental results were reported. In another paper, Marnalis and his group [16] modeled the progressive extensible collapse of frusts and gave a theoretical model that depicts the changes in peaks and troughs of the experimental load-displacement curves. The comparison with the experimental results gave a fair degree of accuracy.

The above studies deal with axial crushing (or crushling) of frusts between two parallel plates. However, an imprastive mode of axial deformation is presented in this paper. This mode is invared (free or direct) invention. In whit follows, nextle of experimental work as

well as finite element modeling conducted on the inversions of capped span aluminum frusta are presented.

3. FINITE ELEMENT MODELING

The finite element method (FEM) has been used externively to simulate many applications in structural dynamics [R,17-19]. In the prosent study, ABAQUS Explicit FEM code (version 5.7-3) is employed to investigate the modes of deformation of frusts under quasi-native loading. Fig. 2 shows the finite element models used in this study for the inversion. An axisymmetric four-model element, CAXAR, is used for modeling the frustram shows in Fig. 2. About, 300 elements are used for the model. Massival properties of the model were taken a rigid perfectly plastic with yield strongth S,=125MPa, and density \(\rho^{-2}200\) Kg/m². All nodes at the centerline of symmetry were selected to move early in the vertical direction. Both upper and lower surface were set in onetact with rigid body surfaces. These rigid surfaces were modeled using two nodes at skymmetric rigid elements, RAXA. A coefficient of fiscient of \(\rho^{-1}\). In the content of the model is the top and surface were the model. This node was set to move at a velocity of 0.01m is representing quasi-studic case. The upper small capped end of the frustom was in content with representing pussi-studic case. The upper small capped end of the frustom was in content with a rigid body moving at a content with representing pussi-studic case. The upper small capped end of the frustom was in content with a rigid body moving at a content with the proving at a content with the province of the first the province at the province at the province at the province at the provin

4. EXPERIMENTAL

A large reamber of flusts, featuring different thicknesses and apex angles were subjected to whose loading conditions. The program involved the use of twelve different sizes of aluminum frunt of different space angles and 4 different discusses of for invention. Additional tests were conducted to investigate the effect of impact speed on the invention process. Tests were conducted by the use of a 50-son Instruct Universal Testing machine (UTM) as well as a falsing weight banner (FWH) of 7 m/s striking speed. Special [1g for inversion was reasonable and utilized. The jig consisted of an invention rod and a base epituder, as shown in Fig. 1. The upper jew of the UTM clamped the rod, and the base reside on the lower jew. A striking weight the same jig was utilized also with the FWH, in which case the inversion rod was simply statished to the falling weight.

5. RESULTS AND DISCUSSION

5.1 Static Testing

In this section details of the experimental load-displacement curves and finite element results for invention are presented in details for quasi-static loading. Results of dynamic loading at high impact velocity are summarized in Section 5.2. A spen firstnam (Specimen No. 23) was inverted at quasi-static condition using the UTM moving at a cross-head speed of 10 movimis. The specimen has an angle cu-60°, large distretor D=73 mm, small diameter d=22.5 mm, thickness t=1.25 mm, height b=44 mm, and mass m=25.72 games.

Figure 3 shows experimental and finite element (FE) load-displacement curves for the span aluminum finature. It can be observed that good agreement is obtained between the experimental results and FE predictions. It can be observed from the figure that the finature passes through a sausher of stages. The load rises quasi-linearly from the origin to point (a). The force at point (a) represents the load elimination; Up to this point the deformation is seconcerable, i. inguilastic and bryond which plants behavior sees in. The zone between (a) and

(b) is a zone of incubation, within which the cap of the finature is deformed in such a manner as to facilitate the invention type of deformation. There localized plants integes developed from point a to point be and extensible mode of deformation was observed. Point (b) signals correption of the development of the invention zone. Invention then proceeds towards the larger (lower) end of the flustum, until point (c) is reached, see photograph in Figure 3. The increase in the invention force from (b) to (c) is starbed to the processor in the volume of the deformation one it he measuing DA tasis. Point (c) in Fig. 3 signals for termination of the invention zone, the bending from having reached the vicinity of the first large end of the finatum. From point (c) is off) invention mode changes into finaturing mode and the undeformed part of the finatum is the shape of Belleville spring, see photograph in Figure 3. The free end of the finatum in flattening mode about the shoulder of the jig base. The correy absorbed recorded experimentally by the finatum through this inward inversion in 9.73 Jign, whereas the predicted energy by Fig 19.47 Jigns.

The FE details of the invention process can be seen in Fig. 6 that gives the inversion mode of deformation in 9 stages. These stages were captured at the following axial intervals: 0.3, 10, 20, 59, 60, 77, 83, 85mm. The second and the eighth stages show the initiation and termination of the inversion process, respectively. Figure 5 shows half of the frustum (Specimen 23) before and after the inversion as predicted by the FE and the true photograph of the frustum. Excellent agreement between the two deformed shapes is obtained. Frust mode of mild stock, galvanized shoet steel, low carbon steel and PVC were tested successfully. Also, frusta mende to divide the viewing an worlding, machining and spenning were also tested successfully.

5.2 Dynamic Testing

In order to access the effect of speed on the process of inversion, identical frusts were nested using UTM at cross-head speeds of 2, 20 and 200 men'rules. Additional testive were conducted on the FWH facility using different falling masses. Impact velocities up to 7m/s were used in these tests. As all specimens in these tests behaved as in quasi-static tests. It was concluded that inversion is not afflorted by strain sate for low impact velocities. Shapes of the inverted frusts at quasi-static conditions are very similar to those inverted at dynamic case. Figure 6 shows a phonoment of inverted frusts at dynamic conditions using FWH.

The possibility of re-using the invented frusts was investigated. evenal ents were conducted for invented rand in the re-invention of invented frusts. Figure 7 shows the load displacement curves of the first, second, third and fourth inventions. Results from such experiment show that it is possible to invert and re-invent the frustsam. All speciments failed, however, during the fourth invention.

6. CONCLUSIONS

New mode of axial deformation of frusts is presented. The proposed mode is repeatable and predictable. Although the energy density of this axial mode of deformation is less than that of tobe inversion, the inversion of frusts required simpler test tig and no die is required. In fact it was found that of frusts might be invested several times, indicating that it is possible re-use the same absorber. Since all appointmen in the impact tests behaved a n to usel-state ests, it is concluded that within he appointmental ange if mpact peeds 0-7m/s), he recens o inversion in not affected by the speed of deformation. Finally, good apportune was schieved between the experimental results and the predictions by the FE model at the condition investigated.

REFERENCES

- Johnson, W. and Reid, S. R., "Metallic Energy Dissipating Systems, "Appl. Mech. Rev., Vol. 31, pp. 277-288, (1978).
- Alexander, J.M., "An Approximate Analysis of the Collapse of Thin Cylindrical Shells Under Axial Loading," Quart. J. Mech. Appl. Math., Vol. 13, pp. 10-15, (1966).
- Reddy T.Y. and Al-Hasseni, S.T.S., "Axial Crushing of Wood-Filled Square Metal Tubes," Int. J. Mech. Sci., Vol. 35, pp. 231-246, (1993).
- Abramowicz, W. and Wierzbicki, T., "Axial Crushing of Fours-Filled Columns," Int. J. Mech. Sci., Vol. 30, pp. 263-271, (1988).
- Reid, S.R., 'Metal Tubes as Impact Energy Absorbers," Metal Forming and Impact Mechanics, ed. S. R. Reid, Pergamon, New York, pp. 249-269, (1985).
- Mamalis, A.G., Manolakos, D.E., Viegelshu, G.L., Vaxevanidis, N.M. and Johnson, W.,
 "On the Inextensional Axial Collapse of Thin PVC Conical Shells," Int. J. Mech. Sci., Vol. 28, pp. 323-335, (1985).
- Al-Hanani, S.T.S., Johanon, W. and Lowe, W.T., "Characteristics of Inversion Tubes Under Axial Loading," J. Mech. Eng. Sci., Vol. 14, pp. 370-381, (1972).
- Reid, S.R., "Plastic Deformation Mechanisms in Axially Compressed Metal Tubes Used as Impact Energy Absorber," Int. J. Mech. Sci., Vol. 35, pp. 1035-1052, (1993).
- Lu, O., Ong, L.S., Wang, B. and Ng, H.W., "An Experimental Study on Tearing Energy in Splitting Square Metal Tubes," Int. J. Moch. Sci., Vol. 36, pp. 1087-1097, (1994).
- Abramowicz, W. and Wierzbicki, T., "Axial Crushing Of Multicorner Sheet Metal Columns," J. Appl. Mech., Vol. 56, pp. 113-120, (1989).
- Pontlethwaite, H.E. and Mills, B., "Use of Collapsible Structural Elements as Impact lociators with Special Reference to Automotive Applications," J. Strain Anal., Vol. 5, pp. 58-73, (1970).
- Algharedi, A.A. and Aljawi, A.A.N., "Cubic Steel Rod Cells as Energy Absorbers," Proceedings of the Complas 2000, Barcelona, Spain, September 11-14, 2000, submitted.
- Mamalis, A.G. and Johnson, W., "The Quari-Static Crumpling of Thin-Walled Circular Cylinders and Frusta Under Axial Compression," Int. J. Mech. Sci., Vol. 25, pp. 713-732, 1983.
- Mamalia, A.G., Johnson, W. and Vingelahn, G.L., "The Cruesbling of Steel Thin-Walled Tubes and Frental Under Axial Compression at Elevand Stein-Rate: Some Experimental Results," Int. J. Moch. Sci., Vol. 26, pp. 537-547, (1984).
- Marralis, A.G., Manolakos, D.E., Saigal, S., Viagetahn, G. and Johnson, W., "Extensible Plastic Collapse of Thin-Wall Frusts as Energy Absorbers," Int. J. Mech. Sci., Vol 28, pp. 219-229, (1986).
- Marsalla, A.C., Marsolakos, D.E., Viegelake, G.L. and Johnson, W., "The Modeling of the Progressive Extensible Plastic Collapse of Thin-Wall Shells," Int. J. Mech. Sci., Vol. 30, pp. 249–261, (1988).
- Bammann, D. J., Chjiesa, M. L., Horstemoeyer, M. F. and Weigsten, L. T., "Failure in Ductile Materials Using Finite Element Methods," Structural Condivorthiness and Failure, ed. N. Jones and T. Wietriblek, Element, London, pp. 1-54, (1993).
- Kormi, K., Shaghouei, E. and Duddell, D.A., "Finite Element Examination of Dynamic Response of Clamped Beam Grillages Impacted Transversely at Their Center by a Rigid Mass," Int. J. Impact Eng., Vol. 15, pp. 647–697, (1994).
- HKS, Inc. ABAQUS/Explicit User's Manual, Theory and Examples Manual and Post Manual, Version 5.7, Explicit, (1997).

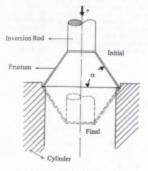


Figure 1. Direct inward inversion of frusta.

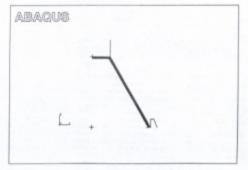


Figure 2. FE model for direct inversion.

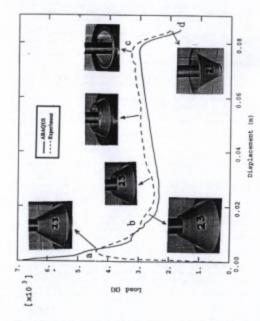


Figure 3. Experimental and FE load-displacement curves for quasi-static inward inversion of capped aluminum frustum.

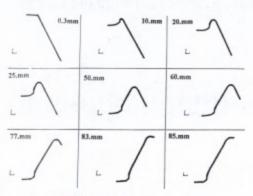


Figure 4. ABAQUS deformed plots for inward inversion of aluminum frustum.

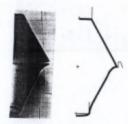


Figure 5. Comparison between the experimental and the FE prediction of a frustum before and after inversion.

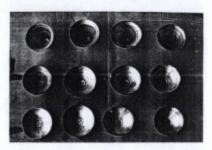


Figure 6. Photograph shows spun aluminum frusta inverted using fulling weight harmor.

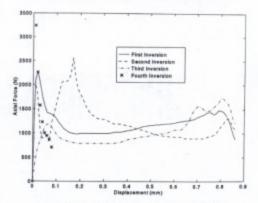


Figure 7. Force displacement curves of inversion and re-inversion processes.

AUTHOR INDEX

41-1-1 244			
Ababneh, M.A.	339	Elsayed, E.A.	553
Abd El-Ghany, K.M.	261	El-Shaer, Y.L.	195
Abdel-Hamid, A.	467	El-Sonbaty, I.	455
Abdel-Hamid, A.A.	331	El-Wakad, M.T.	531
Abdel-kader, M.S.	195	El-Zoghby, A.A.	243, 281
Abdel-karim, M.	185	Era, H.	323
Abdel Motelly, M.S.	75	Fahmy, M.F.	313
Abdel-Shafi, A.A.A.	303	Fanni, M.	45
Abduljabbar, Z.S.	95	Fatshalla, N.	369
Abo El-Naser, A.A.	407	Faye, R.M.	631
Abo-El-Ezz, A.E.	253	Fouda, N.	303
Abo-Elkhier, M.	293	Fourquet, JY.	57
Abou El-Ez, S.R.S.	571	Ghanya, A.	477
Ahmed, A.K.W.	105	Gharieb, W.	67
Ahmed, A.Y.	397	Goforth, R.E.	357
Al-Bastaki, N.M.	243	Gonzalez-Rojo, S.	631
Alghamdi, A.A.	511	Hafiz, M.	
Al-Haddid, T.N.	339	Hammouda, M.M.I.	369
Ali-Eldin, S.S.	205	Hamza, K.T.	215 27
Aliawi, A.A.N.	511	Handou, M.	
Alkhoja, J.	233	Hassan, M.	. 611
Almakhdoub, S.A.	347	Hedia, H.S.	131
Aly, M.F.	205	Hegazy, A. A.	303
Aref, N.A.	195	Helal, M.E.	415
Attia, M.H.	521	Ho, K.	591
Attia, M.S.	185		151
Badr, M.A.	591	Hosni, Y.A.	491
Bahei-El-Din, Y.A.	271	Hozayyin, A.S.	591
Bahgat, A.	75	Hussein, A.A.	467
Bahr, M.K.	139	Ibraheem, A.A.	75
Bakhiet, E.	281	Ibrahim, R.N.	563
Bayle, B.	57	Jamshidi, M.	3
Bayoumi, A.M.E.	501	Karnopp, D.	85
Behnam, W.M.	233	Kassem, S.A.	139
Bravo, R.R.	37	Khalil, M.	281
Brochado, M.R.	611	Khattab, A.A.	539
Choi, B.K.	425	Kim, B.H.	425
Darwish, S.M.	477	Kishitake, K.	323
Dashwood, R.J.	389	Krempl, E.	151
Dokainish, M.	37, 131	Labib, H.F.	389
El-Keran, A.A.		Lee, P.D.	381, 389
El-Arabi, M.E.	45, 447 85	Liu, P.	105
El-Beheiry, E.M.	85, 113	Mahmoud, F.F.	205
Elbestawi, M.A.		Masoud, M.I.	323
El-Koussy, M.R.	437 261	Mazen, A.A.	397
ElMadany, M.M.	95	McCormack, A.D.	563
El-Maddah, M.M.		Megahed, A.A.	455
El-Mahallawi, J.	195	Megahed, G.M.	381, 389
El-Midany, T.T.	261, 389	Megahed, M.M.	185, 195
El Moudani, W.	447	Megahed, S.M.	27
Elrafei, A.M.	611	Meguid, S.A.	161
Elsawy, A.H.	271	Mohammed, H.H.	621
Lineary, A.H.	313	Mora-Camino, F.	123, 611, 631

A RULE - BASED APPROACH FOR THE FORMATION OF MANUFACTURING CELLS

S.M.R. Aldonous, A.A. Allowadi and M. Alepati College of Engineering, King Abdulante University P.O.Bon 9027, Indian 2:413, Saudi Analisa

ABSTRACT

The formation of cells is one of the difficulties encountered during the design of cellular manufacturing systems. The proper formulation of part families and their associated cells represents the assua formidable of difficulties in this respect.

The present research assumes the appropriateness of a nel-based system for the implementation of several different nechaligate formulating product families and muscined cells. To this end, rules are developed for each, is efforts to investigate the validaty of those rules, the resulting rules are applied to real factory data. Particular attention is poid to cell formation and the applicability of different procedures to overcome bettle-neck formation within the cell.

It is concluded that rule-based systems can be used effectively for determining the appropriate procedure to be used for overcoming of the bestineck situation that arises during cell formation. It is further shown that the use of rule-based systems can lead to significant savings in time during the implementation of these exchanges.

. INTRODUCTION

Group Technology (GT) is a philosophy that aims at improving productivity of manufacturing systems by exploiting similarities inherent in parts. GT is defined by Groover' as a

manufacturing philosophy in which similar parts are identified and grouped tegether to take advantage of their similarities in manufacturing and design. The application areas of GT can be classified into several major entegories: part design through computer aided denies, computer aided mences. planning. cellulae manufacturing, materials management, and quality control. This work is mainly concerned with cellular manufacturing Cellular sussificturing in the application of GT principles to manufacturing boxed on classifying parts that require similar processing into families. Subsequent or simultaneous to the part family determination, the machines required to produce a particular family are determined. The needed machines may then be moved and grouped into machine cells. Thus, each machine cell is dedicated to the production of a particular part families.

Cellular manufacturing involves processing collections of similar parts, so sailed part familiar, so dedicated chatters of dissimilar machines or manufacturing processes, called cells, such that a part is completed within a call or with a minisman marbor of inter-cell standers. This implies that parts are supported to familiar that parts are properly in the produced by compatible machines. The machines are amonged to allow for a continuous work flow through the series of operation. Distances between machines are minimized to allow for easy stander of susterials within the

cell. A common arrangement is the Ushaped cell, which allows for entry at one end of the U and exit at the other.

There are numerous benefits associated with cellular manufacturing. Burbidge1 categorized the benefits of cellular manufacturing as advantages due to set-up time reductions, group layout, and improved flow control. The benefits associated with reduced set-up time include an increase in capacity, a reduction in the tooling investment. reduced set-up cost, and reduced operation cost because more economical machines can be used as a result of the high aggregate volume of sport family. Gallacher and kniels* listed a number of the advantages of cellular manufacturing including improved lead times, less work-inprocess and finished goods inventories. less material handling, better space utilization, better production planning and control, improved quality and scrap, and reduce production design variety. Wemmerlov and lover noted that the interest in Cellular manufacturing can be attributed to two important factors: major international competitors and the emergence of new technologies.

A problem associated with cellular manufacturing is how to determine part foreilles and machine cells. This problem stems not from a lack of sechalques, but rather from the abounce of clear guide lines for determining which technique is appropriate for a given situation or a given set of objectives. Studed and associates offered perhaps the most congestionable tassociates of open family machine group formation techniques. These authors fast cleasily

part family/ machine group formation procedures as these based on part family grouping, machine grouping, or machine-part grouping.

Important problems encountered in cell formation are recognized as

- (1) part family formation.
- (2) parts allocation.
- (3) machine group formation,
 (4) machine allocation, and
- (5) machine-part grouping.

Considerable research has gone into this area and several procedures have been developed over the years.

Generally, the parts in one family would have similar geometrical attributes, and or require similar machining processes. Usually, part families are formed in one of two methods, (1) the part family consists of parts which are similar in shape within a certain dimensional range, and have most or perhaps all machining requirements in common, or (2) the pat family consists of parts of dissimilar geometry, but which have some operations in common. The design of part families is usually the first step in cell formation. This alone does not help to achieve the desired objectives of cell formation, unless machines are grouped to manufacture one or more part families.

Parts allocation could arise in two ways: (1) machines have been grouped into cells based into their capabilities to process the parts, and the problem is to allocate parts to the machine groups, (2) new parts are introduced into the system which have to be manufactured. The allocation of new part or parts to appropriate machine groups must be done without disrupting the existing configuration. Also, it is helpful to know beforehand if the new part or family of parts could be manufactated within the existing machine cells. This leads to other decisions such as redesigning or subcontexting of the part, or expanding the production facility.

The machine group formation is concerned with the problem of grouping machines into cells. Each cell corosist of dissimilar types of machines to efficiently produce a family of parts requiring admost similar machining operations. Designing machines groups executively means recognizing and using the relationship between machines. This relationship is defined in terms of the parts that have to be processed on these machines.

Machine routings and production requirements of the parts are usually the input information needed to form machine groups. Once machines are grouped into cells, parts are allocated to these cells and the cells are valuated on factors such as machine utilization.

The ment popular nethod for machine grouping is similarity coefficient methods for machine grouping methods for machine grouping are identical to similarity coefficient methods for part family grouping. The only difference is that in machine grouping, the similarity coefficient measures the similarity coefficient measures the similarity between pairs of machines. Usually the similarity coefficient between two machines is defined as the number of components visiting both machines.

divided by the number of components winting either of the two machines. These similarity coefficients are stored in a similarity matrix, by analyzing this matrix, the similarity coefficients of each pair machines is flowed. Mext, the single linkage cluster procedures is then applied to the similarity matrix and machine groups are formed. Finally, parts are allocated to the identified machine groups.

Machine allocation is an important problem encountered in the planning stage of a cellular numufacturing system as implications affect any efforts to economize on tooling requirements and improve machine utilization and materials handling. In many firms, the grometric feature-based erospine has been mainly a part of design standardization effort for the various shapes of the parts. The concept has been used in the computer aided process planning area where an attempt to relate the processing steps to geometric features is made to develop computerized system for generating process plans.

Machine-part grouping in concerned with the gooblem of producing parts with similar processing requirements in machine groups. Each machine group consist of dissimilar types of machines which possess specific manufacturing capacities the produce one or more part families. This provides on opportunity to reduce act-up times, thus, allowing manufacturers to reduce lot sizes, thim work-in-process investories, and shorten manufacturing lead times.

The most important task in GT prelication is to find the families of similar parts and forming the associated groups of machines. This process is called machine-component grouping There are different opproaches 13 to machine-component grouping problem. Generally, these approaches can be classified into two categories which are manual techniques, and algorithmic techniques. Unine route card data directly, this method proves to be quick and sufficiently accurate to indicate to the company the scoop for re-arranging the shop floor into independent manufacturing cells. The basic input data is the list of machines that each component visits, ignoring the exact visitation sequence of those machines. This method is not a one step solution to the creation of cells. It is part of a more comprehensive system design tool called production flow analysis (PFA), which is a method for identifying part families an associated groupings of machine tools, It does not use a classification and coding system and it does not use part drawings to identify families, Instead, PFA is used to analyze the operation sequence and reachine routine for the parts produced in the rives shop. It groups parts with identical or similar routing together. These groups can then the used to form logical machine cells in a group technology layout.

The cellular munufacturing problem stems from determining the appropriate technique to form part families and machine cells for a given sort of checitives. Many approaches have been developed to solve the GT problem such as classification and coding, rank order and direct clustering algorithms, similarity coefficient

algorithms, and production flow analysis. Much research has been devoted to the cell formation problem such as those reported in reference (157,110-21).

The rank order clustering (ROC)* represents route card data as a binary matrix. Using a positional weighting technique for the "1" entries. in the matrix, the rows and columns are alternately rearranged in order of decreasing rank. The result is a diagonalization of the 1's into several clusters. If independent machinecomponent groups do exist in the data provided, each machine will occur in only one cluster. Components will be uniquely assigned to any one of the clusters. One of the major advantages that the ROC method has over other methods is that it has the ability to deal with the exceptional elements and bottle-neck machine problems. Using this algorithm, the analyst can obtain a visual assessment of the machine eroses and the associated families of parts simultaneously. With such an approach, a very vuluable preliminary assignment of machines can be obtained because if a large number of machines is shared over several clustees. place for cellular manufacturing can be shelved at the outset.

Direct clustering algorithms (ICAA) is a sechalque which provides a simple and effective way of clustering data directly from any given machine component matrix. The mage preceding group analysis involves the formation of a machine -component matrix with the rows labeled with component sumbers and the columns with machine numbers.

The machine and parts data can be classified into three categories, and accordingly, the applicability of the previous approaches can be justified. Firstly, if the available data is mainly about the design and manufacturing attributes of the perts, then the classification and coding approach is the most suitable tool to classify these parts into families, Secondly, if the available data is in the form of machinepart matrix, then rank order or direct clustering algorithm is the appropriate approach to form diagonal clusters which represent part families and machine cells. Thirdly, if the available data details the process routings of each pert, then production flow analysis approach can be applied to form part families and their machine cells.

The construction of expert system is, in general a lengthy process that requires prototyping approach. Prototyping is an interactive process involving continuous testing, evaluating, and improving. Knowledge acquisition is the major problem with expert system development. The different stages for expert system prototyping are discussed. Many tools have been developed to shorten the development process and to make expert systems economically feasible. These tools, which are available at different levels of technology, can be used independently, or they can be combined. The major tool concept is the shell, which represents an expert system lessen its knowledge base. LEVELS 56 is an expert system shell used in this work. When a shell is ungraded and improved with special canabilities, it can be used to build specific expert systems rapidly and economically.

The manual application of the provious approaches is a tedious and time communing task when real data is used. Therefore, computer is employed for the fulfillment of this tank. Hence, many software tools are developed to add programments to structure expensive and knowledge in the form of expensive systems which are capable of giving decisions when contailed for GT enrichions.

The ultimate group technology application is rearrufacturing is to form manufacturing cells. A requestial or simultaneous approach could be adopted for cell formation. The sequential approach first forms the part families or muchine groups followed by machine assignment or part allocation respectively. The simultaneous approach determines the part families and machine groups simultaneously. Although the simultaneous approach is better, it usually suffers from computational difficulties. A rule-based system, presented in summary form below, was developed to overcome these computational problems, where it implements both securitial and simultaneous approaches. According to the available data, the system applied the Opitz coding system, or the rank order and direct clustering algorithms. or the nuclear contients method.

Depending on the variety of the product rais and the volume of production, traditional approaches to organize the manufacturing system for distinishin partie manufacture all seem to focus on two strategies. In general, the automated of or operational and advocated for operationism manufacturing a few product in large banches, while the job shop of the configuration is adopted for those companies that manufacture a large variety of products in smaller batches.

The precent research assesses the appropriateness of a rule-based system for implementation of several techniques for ferresulating product familias and associated edit. To this end, rules are developed for each of these techniques in efforts to investigate the validity of these rules, the resulting rules are applied to real factory data. Particular attention is paid to cell formation, and the applicability of different procedures to overcome businesses formation with the cell.

2. THE RULE-BASED SYTEM

Use was made, as summarized below, of the LEVELSS Expert System software and a commercial data base package 1, to execute structured programs for known techniques for the formation of part families and of cells. Subsequently nule-based procedures were developed for the solution of bottle-neck problems for both machines and for parts.

The rule-based system consists four sub-systems shown schematically in Fig.1, and written and executed through LEVELSS Expert System Software. The first sub-system is represented by the classification and coding technique for rotational parts developed by Opitz, and was written in production Rule language (PRL), which is encapsulated in the LEVELS software. The second sub-system. consists of two systems written in BASIC, and interfaced with LEVELS. These two systems represent the rank order clustering and direct clustering algorithms. The third sub-system is represented by the production flow analysis nuclear synthesis, and was written in PRL. The fourth sub-system consists of six syntems for scenarios of the exceptional parts problem, and these were written in PRL.

2.1 COMPARISON OF LEVELS AND TURBO PROLOG.

Initial analysis indicated that three factors affect the decision about the most suitable software for the development of the proposed rule-based system. The first factor, is the capability of the software to process data-base (DB) files. The proposed rule-based system requires different arrangements of data files for the parts and the exachines required to produce them. Therefore, DR files and the methods of processing them play a major role in the development of the system, LEVELS software communicates with DB software, and this is a very good facility, where the power of an independent software can be unified software. On the with LEVELS other hand. Turbo prolog Software lacks this facility, and the way it deals with data is to write specific programs to manipulate the data in the required structure. Therefore, for every data gructure a separate program is required. and that complicates the task of the development of the rule-based system.

The second factor is the explanation facility. The need for this facility arises when the user of the proposed system requires more information regarding a specific query during consultation. Econtially this facility can fulfil the requirements of the user whenever they arise. Turbo

prolog Sellware, which was used for the development of the Opitz system, does not provide the user with supplementary information during consultation saless additional software is written.

A third factor to be considered is the ability to install other subware packages. Tathe peolog lacks this facility, whereas LEVEL5 provides the facility to interface with and install up to three different nothware packages internally, where they can be executed from its main news. It was decided, therefore, to unlike LEVES5 for the subscopping development of the system.

2.2 RANK ORDER AND DIRECT CLUSTERING ALGORITHMS.

Rank Order Clustering (ROC) is designed to generate diagonal groupings in apart and machine matrix (Fig.1) It requires the paradigm of cellentries in the rows and columns of the matrix to be read as binary words. The corresponding decimal againglence of these binary words are then used as the busis for the ranking of the rows and columns. The algorithm re-arranges rows and columns in a receptive manner, and eventually produces a matrix in which rows and columns are arranged in an order to decreasing binary values. If the new matrix does not show diagonal groups, then the rearrangement of rows and columns is repeated until the existence of these diagonal groups. Two programs were developed for the implementation of ROC and DCA in BASIC, and they were interfaced with the LEVEL5 shell.

One of the odvantages of the clustering system is its capability to give the user a pre-audit idea about the expected part families and the cells required to produce them. Secondly, the system only requires the matrix incidence for the parts and the machines required to produce them. Application to practical data showed several drawbacks of this system. A serious disadvantge is that the system lacks the potential to solve the bottle-neck problem. Furthermore, the system does not inspect the loads against the capacities of the machines in the formed cells. Also the developed elastering system are not saliable for real-life problems, since ROC has a receivery affingation problem related as BASIC

It was concluded hence that, although the clustering system does form diagonal groups according to ROC and DCA procedures, it does not solve the exceptional part or machine bordeneck problems. It was discovered that when a bottle-neck does occur, the system allocates most of the existing machines to it, and prevents the formation of purely separable groups. The foresation of diagonal groups is also interrupted when a machine bottleneck problem arises. Furthermore, the existence of a bottle-neck, he it due to spart or to a machine, prevents the formation of part families and machine cells, and the system makes one part family and one cell from all the parts. and machines in the matrix. Both the ROC and DCA lack the capability to find a part or machine bottle-neck when it exists, and therefore, they do not give any recommendation with respect to the possible procedures to solve this problem.

It must be emphasized that the bustle-neck problem is a very real one, and it is for this reason that it deserves apecial attention during the development of a practical rule-based cyclem.

2.3 NUCLEAR SYNTHESIS METHOD

A rule-based system was written in production rules languages for the implementation of the nuclear synthesis method (Fig. 1). The system consists of four sub-system to fulfill flow main stages. The first sub-system calculates the usage frequency for all machines in the DB. The second sub-system locates all machines in the DB, The second sub-system locates all machines muchines in the DB, The third sub-System forom machines and the parts requiring them. The last sub-system groups the related modules to forom cells.

We present below one case of practical application of the nell-based system that was developed for this method. To this end, the system was interfaced with the 197 parts, 87 machines and the reprocessing routes, each part requiring 5 operations on the average.

The implementation of the suclear synthesis method was conducted in two phases:

i) manually and

manually and by the use of the rule-based system. The main objectives of the manual implementation, and to check that the outputs of the rule-based system are correct. The generic procedures for the nuclear symbots method were implemented manually before structuring them in the first of a rule-based program. The manual application was a very time consuming process, especially the filling of the modular synthesis shoet, where the availability of every machine type and the modules requiring it must be recorded and updated if another modules equives that machine type. The time required the fulfill the requirements of this method narously was approximately four works.

In the second phase, the implementation of the nuclear synthesis method was undertaken by the use of the computer, utilizing LEVLES software for the development of a rulebased system. During the calculation of usage frequencies of 87 machines, the documentation of all process details required three days, when executed by hand. On the other hand, the rule-based system completed this process in one hour. The process of formation of modules is even more labor-intensive, it required approximately one week to form 71 modules by hand. On the other hand, the rule-based system required approximately 2 hours to accomplish the same task. The system formed 71 modules from the 197 parts and the \$7 machine types, searching routings data files for every nucleus machine, and listing all parts that require it, and other machine types required by the located parts.

2.4 THE BOTTLE NECK PROBLEM IN MANUFACTURING CELLS

A bottle-neck case can arise when grouping parts and machine families, in most real-life situations. There are two types of bottle-neck problems, i.e., bottle-necks in machines and bottle necks in parts. The bottleneck in machines problem arises when large numbers of machines are required to process a few number of parts. In other words. when different manufacturing cells require a specific machine type, where the available number of the required machine type is loss than the number of cells requiring it, then a bottle neck in machine problem arises. On the other hand, a bottle-neck in parts normally arises when a limited number of parts are to be machined on a large number of machines.

When developing the software for tackling the bottle-neck cases (Fig. 1), a stage by stage approach was adopted. In the first stage, an attempt is made to solve the problem by finding an alternative machine for the bottle-arck machine, and to assign it to the cell which needs it. If this is not nossible. the second stage commences, where the system looks for an alternative routing for the part or group of parts which require the bottle-neck machine. If this procedure is unsuccessful, then the system assesses the possibility of subcontracting the parts requiring the bottle-seck machine to another cell, else the system advises on the possibility of sub-contracting these parts to another company or to re-design the parts to utilize the available machine types if

possible, or to purchase an extra machine or machines to overcome this problem.

CONCLUSIONS

Two types of non-precedural language software, namely LEVELSS and Turbe Prolog were compared to justify their parprepriateness for the development of the cell formation rale-based system. The procedure for this comparison was to implement the different approaches for cell formation with the aid of two different types of software, and arises their capabilities and first think. Accordingly, LEVELS, we observe thank.

Next, a study was conducted on the implementation of the classification and coding technique as a solution for the part families and reaching groups formation problem. The Opitz code system was mainly used for the classification of parts, where the developed system requires the design attributes of the part to be classified. One of the main advantages of developing the Opitz code by using two different software packages was to lader the appropriateness of Turbo Prolog and LEVLESS software for the development of the proposed rule-based system. It was concluded that LEVELSS is the superior of the two packages, and it was decided to rely on the latter software for the subsequent development of the rule-based system.

With respect to the two rulebased ROC and DCA, their validity was verified through the application of examples taken from the literature. It was observed that the radiobased system for the medium synthesis method forms manufacturing cells flows part's reatings, where it finds susteer suchines, and foom modules around these machines, and floot it groups the formed modules into cells. It was likewise useed that the production flow analysis modern synthesis method requires a comprehensive set of data about the parts and the required machine to process them. It is concluded before that this method represents the largest part of the developed overess.

It was shown that the output of the nuclear conthesis method, when implemented by using the LEVESS software, agreed the output from a manual processing of the same set of data. In addition to that, significant time sovieus were achieved due to the arelication of the nuclear symbosis method in the rule-based system. In addition, the possibility of making mistakes was high in mencal processine, and not that easy to trace. The rule-based system, on the other hand, was not likely to commit human mistakes once its logic and structure have been tested and fully validated. It was concluded that this achievement of similar output, by ht use of the rulebased system, in a much shorter time was due to the logic potential of the rule-based system, and the capability of LEVEL5 software to manipulate up to four DB files in a single procedure.

It was noted that, in real-life situations, the part families and cells formation techniques may encounter a machine bottle-neck, or a part bottleneck problem, or both of them.

It was necessary, therefore, to develop software to encapsulate such situations, and to offer helpful advice. and to suggest possible solutions. Three approaches were envisaged for such alternative machine spenieries: mencedures. alternative routing procedures, and internal sub-contracting procedures. It was concluded that these approaches should be applied in the mentioned order for tackling any bottleneck problem. When it fails to find a satisfactory solution by the adoption of the above procedure, the system then advises, the user to sub-contract the parts requiring the bottle-neck machine to another factory, or to re-design these norts to utilize the available muchine types, or to purchase the bottle-neck machine or its alternatives.

4. RECOMMENDATIONS

It is clear that the required time for the system to form cells can be reduced by using finite computer.

The ROC and DCA systems could handle, in the present case, is maintin of 20 machines and 20 parts only, due to a manipul shortage in ansigned memory by BASIC, and due to limitations of the visual display unit (menitor). Adoption of more parveful software, and the implementation of an on-line printers with large printing paper should sweepen the printers.

REFERENCES

 Groover, M.P., Automation. Production System, and Computer Integrated Manufacturing. Prentice-Hall International Editions, 1987.

 Fry, T.D.J Wilson, M.G., and Breen, M., A successful implementation of Group Technology and Cell Manufacturing Production and Inventory Management, 1987, third quarter, pp. 4–6.

 Hurbidge, J.L., The Introduction of Group Technology, John Wiley & Sons, 1975.

 Gallagher, C.C. and knight, W.A., Group Technology Production methods in Manufacturing, Ellis Horwood Ltd., 1986.

 Hyer, N.L. and Wenmerlov, U., Group Technologyoriented Coding Systems: Structures, Applications, and Implementation, Production and Investory Management, 2nd Owarter, 1985, pp. 55-78.

 LEVEL5 Expert System Software manual, Information Builders, Inc., 1259 Broadway, New York, NY 10001, 1987.

 Seifoddini, H.; and Welfe, P.M., Application of the Similarity Coefficient Method in Group Technology, institute of industrial Engineering Transactions, Sept. 1986 pp 221-222.

 Khator, S.K. and Irani, S.A., Cell Formation in Group Technology: A new approach. Computer Ind. Engag., vol. 12, no. 2, 1987, pp 131-142. King, J. F., Machino-

King, J. F., Machine-Component Grouping in Production Flore Analysis: An approach Using Rank Onder Chottering Algorithm, Int. J. Prod. Res., Vol. 18, No. 2, 1980 on 213–232.

 King, J.R., Machine Component Grouping Using ROC Algorithm, Int. J. Prof. Res. April 1980, pp. 213-231.

 Clun, H.M. and Milner, D.A., Direct clustering algorithm for group technology in cellular manufacturing, J. Manuf. Systems, v. I., n. I. 1982, pp. 65– 74.

12) Sugimori, Y.:Kasamoki, F.: CHO; and Uskikawa, S.: Toyota production system and Kanban system materialization of just-in-time and respect-forlaman system, Int. J. Prod. Res., Vol. 15, 15, 555.

Barbidge, J.L. and Zefenovic, D.M., Using Production Flow Analysis to plan group technology for a new factory, Mater. Flow, vol. 1, 1983, pp 129-140.

Barbidgs, J.L., Production Flow Analysis, The Production Engineer, Vol. 42, No.12, 1963, pp 742-752.

 Burhidge, J.L., Production Flwo Analysis on the computer, The Inestitution of Production Engineer Group Technology Division, Third Annual Conferences, 1973.

Burbidge, J.L., A Manual Method of Production Flow Analysis, Prod, Engineer, Oct. 1977, pp. 34-38.

- 17) Wennerlov, U. and Hyer, N.L. Group Technology oriented Coding Systems. Structures, Applications, and implementation, Production and Inventory Management.
- vol. 26, no. 55, 1985.

 Wesnerstow, U. and Hyer,
 N.L., Procedures for the Part
 Family/Machine Group
 Identification Problem in
 Cellular Manufacuring,
 Journal of Operations
 Management, Feb. 1986, Vol.
 6, NO. 2, pp. 125–146.
- (9) Werrangelov, U. and Hyer, N.L., Research Issues in Cellular Manufacturing, Int. J. Prod. Res., Vol. 25, No. 3, 1987, pp.413–431.

- 20) Vakharia, A.J., Methods of Cell Forwarion in Group Technology: A Framework for Evaluation. Journal of Operations management, Vol. 6, No. 3, May 1986, pp 257-271.
- 21) Kuslak, A. and Chow, W.S., Efficient Solving of the Group Technology Problem, Journal of manufacturing Systems, Vol. 6, No. 2, 1987, pp. 117-124.
- DBASE series, Borbard international, Inc., 100 Borbard Way, Scotts Valley, CA 95066-3249, USA.

HIGH LEVEL COMPUTER VISION

Zahid Haward Quri, Sonive Engineer, KRE, Kahata, Pakatan Prof. Dr. Habshullah Jamal, Dean, Facolty of Electrosis and Electrosics Engineering, UEET, Tomba

ABSTRACT

This paper presents the design, implementation and characterization of a novel digitizer. The digitizer can be used by experimentors and researchers in the field of computer vicino and image processing. It does not require a large bank of semiconductor enemory to store digital image data for subsequent processing. It transfers the digital data of the image directly to the PC's own memory by using the DMA of the PC board. It requires very little hardware and hence is very inexpensive. It can be programmed through software to increase the resolution of the captured image.

LINTRODUCTION

Computer vision technology develops the theoretical and algorithmic basis for automatically extracting and analysing useful information from the observed image. Extraction of features (for example, edges) and analysis and classification of shape boundaries in useful for a variety of purposes. Edges. are useful in matching images, improving the quality of segmentation. texture analysis and extracting shapes of objects in the given images. Shape analysis and classification is useful in a variety of applications including target recognition, character recognition, scene analysis and bio-medical and industrial applications.

The research in the area stands receiving age. The bulk of work was carried out by matherestricians under the heading Pattern Recognition. Recountly math of this work is being done by Electrical Engineers and computer scientists as a field of digital signal processing and computer vision. The availability of high level languages and matered programming reclaniques, are suppositing the research.

The first step in the computer vision technology is to obtain the digital representation of an image. Over the years different opproaches have been adopted for capturing image data. resulting into various types of digitisers. and frame grabbers. Such commercially available digitisers are quite expensive. A key design criterion in our case was to minimise the hardware, in order to make this system cost effective. All this lead to a small printed circuit board (PCB) plugged on the extended interface signal adapter(EISA) bus connector of the PC and a BNC socket provided for making connection of video output of the camera. For researchers who are interested in shape recognition, the proposed approach is most suitable and easily understandable.

The hardware design of the system is given in the next section. The Flow Chart and the Implementation are given in the succeeding sections. Further improvements are also suggested before concluding the paper.