
Eigenstrain Techniques for Modeling Adaptive Structures: I)
Active Stiffness Tailoring

ABDULMALIK A. A. ALGHAMDI1,* AND ABHIJIT DASGUPTA2

1Department of Production Engineering and Mechanical Systems Design, King Abdulaziz University, Jeddah 21413, Saudi Arabia
2Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA

ABSTRACT: Three-dimensional eigenstrain techniques are used in this paper to model mechanical
interactions in an active structure containing small embedded sensors and actuators. Eigenstrain tech-
niques are used to predict the state of the strain inside the devices (sensors and actuators) under exter-
nal and internal loads. The elastic energy of the structure is written in terms of the strain inside the de-
vices, and an analytical dynamic model is developed based on a generalized form of Hamilton’s
variational principle. As an example, the dynamic response of an active cantilever beam containing
embedded mini-devices is investigated analytically and experimentally. Specifically, active stiffness
tailoring capabilities are explored. An analytical solution to the variational problem is obtained by us-
ing the Raleigh-Ritz approach. A numerical example is given and the response of the active structure
is verified experimentally, using a cantilever beam made of Alplex plastic as host material and piezo-
electric (PZT-5H) devices as active mini-devices for sensing and actuation. The analytical results
show reasonable agreement with the experimental observations.

INTRODUCTION

Active materials and intelligent systems have attracted a
great deal of interest from researchers for many years.

Active structures have been used in the area of active vibra-
tion control by many researchers, see for example, Burke and
Hubbard (1987), Tzou and Tseng (1990), Ha, Keilers and
Chang (1992) and Reddy and Barbosa (2000). Piezoelectric
materials have attracted significant attention for their poten-
tial application as sensors and actuators for controlling the
response of active structures. In active structures, distribu-
tions of sensors, actuators, and data processing capability are
used to modify, tune, and control the response of structures to
sensed stimuli.

Numerous studies have modeled the interactions between
devices and hosts in active structures. The response of active
structures with assemblies of piezoelectric wafers in com-
posite beams have been analyzed by using simple beam mod-
els (Bailey and Hubbard, 1985), pin force models (Crawley
and de Luis, 1987), large deformation beam theory (Im and
Atluri, 1989), laminate analysis (Crawley and Lazarus,
1991), nonlinear analysis (Pratt, Queine and Nayfah, 1999),
and one-dimensional eigen-function approximations (Lin
and Rogers, 1992). Variational methods have also been de-
veloped for solving the coupled boundary value problems in
active structures. These include finite element methods
(Allik and Hughes, 1970; Gaudenzi, 1997; Mahut, Agbosou
and Pastor, 1998), Rayleigh Ritz methods (Hagood, Chung

and Flotow, 1990) and strain energy methods (Wang and
Rogers, 1991; Chee, Tong and Steven, 1998). In this paper,
eigenstrain analysis is combined with a variational method as
a modeling technique for active structures.

Most present-day active structural systems consist of rela-
tively large surface-mounted “active” elements that can
cause structural integrity problems due to high stress concen-
trations, poor interfacial bonding, change in the boundary
conditions, etc. These limitations can be partially overcome
by using mini-devices with less obtrusivity, and embedding
them throughout the host to achieve adequate control author-
ity. However, embedding of small devices produces three-
dimensional stress interactions that are more difficult to
model than those arising in surface-mounted devices and
there is a lack of generic modeling techniques for such struc-
tures in the open literature. Nevertheless, number of devices
increases by distributing them into the structure and this
leads to less reliable system. The focus of this paper is one ac-
tive structure with distributions of embedded devices whose
volume fraction is less than 2%.

Eshelby’s equivalent-inclusion technique (Eshelby, 1957)
offers a convenient method to model the presence of an ellip-
soidal heterogeneity inside an isotropic host structure. This
technique is used in this paper to model the elastic interac-
tion between actuators/sensors and the host, by using appro-
priate Green’s functions. The equations of motion of the sys-
tem are derived using a generalized Hamilton’s principle.
The resulting system is solved with a Rayleigh-Ritz tech-
nique. The change in the natural frequency of the structure
due to harmonic excitation of the actuator is examined ana-
lytically.
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Adaptivity of the beam is illustrated through active stiffen-
ing of the cantilever beam for position feedback control. Ex-
perimental verification of the analytical model is presented
for a cantilevered Alplex beam containing small-embedded
PZT-5H sensor/actuator mini-devices.

ANALYSIS

Eigenstrain is a name used in the literature (Mura, 1991)
for stress-free strains such as unconstrained thermal expan-
sion. A powerful and unified solution method, based on
eigenstrain calculations, was introduced by Eshelby in the
late fifties (Eshelby, 1957, 1959) to solve the elastic prob-
lem of an isotropic ellipsoidal heterogeneity inside an isotro-
pic infinite matrix. Since then, this method has been used
by many researchers for stress analysis in composite mate-
rials and fracture mechanics (Christensen, 1991; Mura,
1991).

As shown in Figure 1, an active structure with embedded
mini-devices is modeled as a large elastic host medium with
embedded ellipsoidal elastic heterogeneities. Host and de-
vice materials are approximated to be linear and mechani-
cally isotropic.

The variational principle is a generalized form of Hamil-
ton’s principle, and may be written as (Tiersten, 1969),

(1)

where δ is the variational operator, L is the Lagrangian func-
tional; which is the difference between the kinetic energy and
the electric enthalpy; W is the external work term, and (t0, t)
defines the time interval over which stationary values are
sought.

The linear isothermal coupled electro-mechanical consti-
tutive relation for piezoelectric material is given as (Ikeda,
1990),

(2)

(3)

where σij is the stress tensor, H is the electric enthalpy, εij

is the strain tensor, Cijkl is the mechanical stiffness ten-
sor evaluated at constant (zero) electrical field, eijk is the pi-
ezoelectric stress coupling tensor, Ek is the electrical field
vector, Di is the electrical displacement vector, and is the
dielectric permittivity tensor evaluated at constant (zero)
strain.

Using the definition of electric enthalpy (Tiersten, 1969),
substituting for the work term (assuming only electrical
work), and taking the first variation one can get,

(4)

where ui is the displacement vector, ρ is the density, v is the
volume of the beam, Ω is the volume of the devices, Q is the
specified surface charge density, V is the electric potential,
and s is the electrode surface area of the devices. This is the
electro-mechanical variational equation governing the active
structure consisting of the host and the embedded devices.
The integration domain in the above equation covers the host,
sensors, and actuators. The structural effect of sensors and
actuators on the structure is considered. If the direct
piezoelectricity effect at sensors and actuators is ignored,
then the electrical field is that due to potentials applied at the
surface of the actuators.

In this paper, the eigenstrain technique is used to model the
mechanical interactions in adaptive structures between em-
bedded devices and the surrounding host structure. The
eigenstrain technique provides a three-dimensional solu-
tion for mechanical interactions resulting from the pres-
ence of active (piezoceramics) elements. Also, the
eigenstrain technique is capable of modeling the induced
strains inside (piezoceramic) actuators caused by (electrical)
excitation.

Consider an unbounded isotropic material with elas-
tic constants Cijkl containing a domain Ω (the heterogene-
ity) with elastic constants (see Figure 1). Assume
that the heterogeneity has its own applied eigenstrains
This applied eigenstrain is a result of the induced strain in-
side the inclusion Examples of include thermo-
mechanical, electro-mechanical, and magneto-mechanical
strains.

Denote the applied strain at infinity by and the distur-
bance strain, due to the presence of the heterogeneity and the
applied eigenstrain, by The disturbance stresses are
in self-equilibrium, so that:

(5)
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The displacement boundary condition of the problem leads
to:

(6)

Eshelby’s method for modeling the disturbance field is
based upon modeling the heterogeneity problem as an equiv-
alent inclusion in homogenous media with fictitious
eigenstrains that produce the same stress field in Ω as the
original heterogeneity.

The stress inside the heterogeneity is written using
Hooke’s law as,

(7)

where

(8)

(9)

(10)

Here is the induced strain (produced by electrical excita-
tion for electro-mechanical materials).

The heterogeneous inclusion is simulated by an inclu-
sion in the homogenous material experiencing both an ap-
plied eigenstrain and an equivalent fictitious eigenstrain

(11)

The fictitious eigenstrain models mechanical interac-
tions with the surrounding host structure due to external
loads while the applied eigenstrain models mechani-
cal interactions resulting from the induced strain The
equivalence between Equations (7) and (11) leads to (Mura,
1991)

(12)

If both the far-field strain and the applied strain are
uniform, then the perturbations strain inside Ω is written as
(Eshelby, 1957)

(13)

where the Sijkl is Eshelby’s fourth-order strain concentra-
tion tensor (see the Appendix) and total eigenstrain

To determine the total eigenstrain one needs to substi-
tute Equation (13) into Equation (12). The equivalence con-
dition becomes,

(14)

Equation (14) represents a system of six linear independent
equations for six independent components of the unknown
eigenstrain tensor

In the absence of the induced strain inside the heteroge-
neous inclusion, Equation (14) becomes,

(15)

where
This equation represents the heterogeneity problem

(zero applied eigenstrain). One can solve for the ficti-
tious eigenstrain in terms of the far-field strain as fol-
lows,

(16)

Similarly, for a heterogeneous inclusion in the absence of the
applied far-field strain, Equation (14) becomes,

(17)

where The real eigenstrain can be written in
terms of the induced strain in the heterogeneity as fol-
lows,

(18)

Thus, the total eigenstrain can be solved in terms of and

Now by knowing the total eigenstrain, the perturbation
strain inside the heterogeneity can be found using Equation
(13) and the solution is complete.

The second term in Equation (4) can be written in terms of
the eigenstrain as (Alghamdi and Dasgupta, 1993),

(19)

where
In the present analytical context, both sensors and actu-

ators have a fictitious eigenstrain due to the external far-
field loads, while the actuators have additional
real eigenstrains due to the converse effect of the actua-
tion voltage. As mentioned above, the real eigenstrains
due to the direct effect at sensor and actuator are ignored be-
cause of their negligible magnitude in comparison to that as-
sociated with the converse effect due to the excitation volt-
age.
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RAYLEIGH-RITZ APPROXIMATION

In this section the principle of dynamical modeling of
adaptive structures are combined with eigenstrain tech-
niques presented in the previous section for a one-
dimensional adaptive structure in the form of adaptive beam.
The analysis methodology for modeling mechanical interac-
tions between the devices and the host using eigenstrain tech-
niques, as presented in the previous section, is not limited to
cantilever beams but can be used to model any structure by
assuming appropriate strain distributions. Eigenstrain tech-
niques are made to handle three dimensional structures, how-
ever, only one-dimensional beam problem is studied here in
this paper to reduce complexity of algebraic manipulation
and to illustrate the techniques in the first hand and to make it
possible to be compared to an easy-to-make experimental
setup.

The simple illustrative example chosen here is an active
structure in the form of a cantilever beam with many embed-
ded mini-devices. As shown schematically in Figure 2, two
rows of uniformly spaced mini-devices are embedded in the
beam symmetrically about the neutral plane of the beam. For
simplicity, one row is assumed to contain all sensors, and the
other all actuators. As the beam flexes, the outputs of individ-
ual sensors are used in a position-feedback circuit to actuate
the corresponding (same y-location) active device (actuator)
in the opposite row. The result is a stiffening of the beam and
an accompanying increase in the natural frequency ω, if all
losses in the system are ignored.

Assuming an Euler-Bernoulli beam formulation for
the host cantilever, and in accordance with Rayleigh-Ritz
techniques, the transverse displacement function (w) for the
first vibrational mode is assumed to be sinusoidal in the y-z
plane:

(20)

where l is the beam length, y-axis is oriented along the length
of the beam, and r(t) is a generalized mechanical degree-of-
freedom representing the tip displacement. Equation (20)
provides an approximate shape of the beam deflection. In
more general situations, generic beam functions need to be
used to approximate beam deflection. Also, due to the com-

plexity of the eigenstrain techniques only the first mode of
vibration is modeled here.

The voltage generated in the sensor is assumed to be pro-
portional to the strain at that sensor (Alghamdi, 1995)

(21)

where zm and ym are the coordinate of the mid point of the sen-
sor, h3ij is the piezoelectric voltage-strain coupling tensor, θij

is the constant solution tensor defined as,

(22)

where γij is the appropriate shape function for the strain field
in the beam, and ηij is defined as,

(23)

and ts is the sensor thickness.
The electrical voltage applied at the surface of the actuator

is proportional to the sensor voltage (Vs)

(24)

where G is the constant feedback gain. Substituting Equa-
tions (13), (16) and (19) into Equation (4) and allowing arbi-
trary variation of r(t) and V(t), one obtains the following set
of equations for the system,

(25)

(26)

where M, Kp, Cp Ka, and Sa are the mass, stiffness, passive
structural damping, electro-mechanical coupling, and capac-
itance, respectively, and q is the applied charge at the sur-
faces of the actuators. The passive stiffness term (Kp), the ac-
tive stiffness term (Ka) and the electrical term (Sa) were all
calculated using eigenstrain analysis developed in the
previous section. Details of these terms can be found in
Alghamdi (1995).

The type of structure under investigation, see Figure 2, has
discrete actuators of simple geometry where the potential
fields are assumed directly and measured experimentally.
The value of V(t) in Equation (25) (“actuator” equation) is
calculated using Equations (21) and (24). Equation (26)
(“sensor” equation) relates the applied voltage and the me-
chanical displacement to the surface charges.

Substituting Equations (21) and (24) in (25),

(27)

where GT is the total feedback gain representing feedback
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gain (G) and the appropriate piezoelectric coupling coeffi-
cient.

For harmonic motion, the square of the first frequency of
the system is

(28)

The frequency response function is

(29)

where ω is the excitation frequency.

ANALYTICAL RESULTS

The primary focus of this paper is to develop a technique to
analyze active structures that have many small active ele-
ments instead of a few large ones. The goal of this simple dy-
namic analysis is to show the capability of eigenstrain tech-
niques to model responses of active structures, in particular
active stiffening. Experimental verification of these results is
presented in the following section.

The chosen beam in this study has the dimensions shown
in Figure 3. Device volume-fraction (Vf) is kept at 2% in the
theoretical analysis to minimize the mechanical interactions
between the devices. The change in the first frequency of the
structure due to harmonic excitation along with a shift in the
peaks of the frequency response functions (FRF) of the
damped system are presented as measures of active stiffen-
ing.

The “actuator” equation is written in terms of the funda-
mental frequency ω, as given by Equation (28), and in terms
of the magnitude of the frequency response function as given
by Equation (29).

Effect of Device Density

Figure 4 shows the effect of increasing the size of the de-
vice (hence device volume-fraction) on active stiffening, at
four device pairs (n = 4). The maximum device volume-
fraction (Vf) is only 2% of the beam volume. Feedback gain
(G) is increased from 0 to 38.

Results presented in Figure 4 illustrate the increase in the
active stiffening as feedback gain increases for Vf = 0.5, 1.1,
and 2%. The fundamental frequency is normalized with re-
spect to the frequency for n = 4 and the corresponding device
volume-fraction at zero feedback gain (G = 0). As expected,
active stiffening (represented by the change in the normal-
ized system frequency) increases as the device volume-
fraction increases. More than a 4% change in the first natural
frequency is achieved for n = 4 and Vf = 2% at G = 38 and the
corresponding electrical field at the actuator near the fixed
end (Emax) is 1000 V/mm.

Effect of Host Stiffness

Figure 5 illustrates the dependence of the fundamental fre-
quency, and hence the active stiffening effect, on the Young’s
modulus of the host material for different feedback gains.
The fundamental frequency is normalized with respect to
that of the passive beam at zero feedback gain, and the host
stiffness is varied from that of Alplex to that of aluminum.

The active stiffening effect rises sharply and then de-
creases with increasing host stiffness. This means that there
is an optimum value for the host stiffness to maximize active
stiffening. To understand the reason for this optimal host
stiffness, consider qualitatively, the host-actuator interac-
tions. When the host is very compliant, the strain caused by
the actuator does not cause a large change in the strain energy
(and hence system frequency). As an extreme example, the
actuator strain would obviously have no effect if the host has
zero stiffness (air). Conversely, when the host is very stiff, the
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actuator lacks the authority to produce large perturbations in
the host strain field or host strain energy. Thus, stiffening ef-
fect decreases in very stiff hosts. The optimum stiffening ef-
fect is therefore encountered in hosts of some intermediate
stiffness. The actual stiffness at which this optimum stiffen-
ing effect occurs, is dependent on system parameters such as
actuator stiffness, actuator voltage, beam geometry, bound-
ary conditions, actuator volume fraction, etc. That optimum
value for this structure occurs at host stiffness equal to 12
GPa, which is about 20% of the PZT device stiffness. There-
fore, choosing the proper host and device stiffnesses can
maximize active stiffening. Similar optimization can also be
achieved through the use of coatings of appropriate stiffness.

Effect of Feedback Gain

Figure 6 demonstrates the effect of changing feedback
gain, on the FRF of the active beam. The plot shows active
stiffening by shifting to a higher frequency due to the in-
crease in the feedback gain (G) from zero to 38 at n = 4 and Vf

= 2%. The first natural frequency of the beam at zero feed-
back gain is 43.41 Hz. This value increases to 44.34 Hz and
45.24 Hz at G = 19 and 38, respectively. The percentage in-
crease in the first natural frequency at G = 38 is 4.2%, as de-
picted in Figure 4.

Effect of Device Location

Figure 7 shows the change in the active stiffening effect as
a function of device location relative to the beam mid-plane.
Feedback gain, number of device-pairs, and device density
are all held constant. The fundamental frequency is normal-
ized with respect to that of the passive beam (G = 0) with the
appropriate device location. Device location is normalized
with respect to half of the beam thickness. Normalized de-
vice location (lo) of 0.5 corresponds to devices located half
the distance between beam mid-plane and free surface. As
the devices move away from the mid-plane, sensors and actu-
ators achieve more sensitivity and authority, respectively.
However, the electrical field is directly proportional to the
distance from the beam mid-plane, and one should consider
its value for constant feedback gain to avoid any depoling of
the piezoceramic actuators.

Devices at lo = 0.25 are able to stiffen the beam by only
1.1% at Emax = 500 V/mm, while devices located half the way
from beam mid-plane (lo = 0.5) produce 4.2% active stiffen-
ing at Emax = 1000 V/mm. At lo = 0.75 the beam stiffens by
8.7% at Emax = 1500 V/mm.

EXPERIMENTAL VERIFICATION

An active cantilever beam was fabricated in the Smart Ma-
terials and Structures Research Center (SMSRC) at the Uni-
versity of Maryland, College Park. As shown in Figure 8, the
beam width is 25.4 mm, the length is 203.2 mm, and the
thickness is 3.6 mm. The piezoelectric device thickness (in z-
direction) is 0.25 mm, the length (in y-direction) is 6.4 mm,
and the width (in x-direction) is 25.4 mm. Device location
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Figure 5. Effect of host stiffness on active stiffening.

Figure 6. Effect of feedback gain on active stiffening (FRF).

Figure 7. Effect of changing device location on active stiffening.



(lo) is 0.29. Material properties of the host and the PZT de-
vices are given in Tables 1 and 2.

The experimental study of the active structure presented
in this research is different from most of the published ar-
ticles (Bailey and Hubbard, 1985; Crawley and de
Luis, 1987; Hagood, Flotow and Von, 1991). This is be-
cause sensors and actuators are relatively small in compari-
son to devices used by other researchers. Dimensions of
the piezoelectric elements are at least one order of magni-
tude less than the dimensions of the cantilever beam in y-
z plane, as shown in Figure 8. As mentioned before, the rea-
son for choosing small devices is to reduce the
obtrusivity and hence promote better structural integrity of
the device.

The first two pairs of devices (a pair denotes a sensor and
the corresponding actuator on the opposite side of the beam
neutral axis, as shown in Figure 2) from the fixed end are
used for active vibration control. The third pair is used to ex-
cite the beam during forced vibration tests. The amount of
strain (or voltage output) measured at the fourth pair is too
small for the cantilever configuration. Therefore, devices of
the fourth pair are not used in this setup. Nevertheless, this
pair could be useful if the active beam is used in other config-
urations like simply supported or fixed-fixed boundary con-
ditions.

An external piezoceramic element having the same di-
mensions as the embedded devices is bonded to the external
surface of the beam 8 mm from the fixed end of the beam, as
shown in Figure 8. This PZT is used as a general sensor be-
cause interactions between stress fields of sensor and actua-
tor are ignored in the developed model.

The feedback system is shown in Figure 9 for the fre-
quency response test. It consists of voltage pre-amplifier

connected to the external PZT sensor. The pre-amplifier is
connected to a 3202 Krohn-Hite low-pass frequency filter to
filter out noises generated in the system.

The signal coming out of the frequency filter is sent to two
different circuits leading to the actuators of the first and the
second device-pairs. Each loop is designed to condition the
signal before it goes to the actuator of the proper device-pair.
The frequency filter is connected to two different phase shift-
ers. The phase shifter is used to adjust the phase between sen-
sor output voltage and the voltage sent to the actuator. The
phase shifter is adjusted manually at excitation frequency
equal to the first natural frequency of the beam. A Crown
Comp-Tech 400 power amplifier is connected to the
phase shifter to amplify the signal before it goes to each actu-
ator.

The experimental value of the feedback gain in each sen-
sor-actuator circuit is computed as the ratio between the actu-
ator voltage Va and the sensor voltage Vs (see Figure 9). The
alternate value of the sensor voltage is estimated from the ex-
ternal sensor as follows,
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Figure 8. Dimensions of the fabricated active beam.

Table 1. Material properties of the host.

Modulus of elasticity 2.4 (GPa)
Poisson’s ratio 0.3
Density 1200 (Kg/m3)

Table 2. Material properties of piezoceramic (PZT-5H).

Dielectric permittivity, 301 (10–10 F/m)

130 (10–10 F/m)

277 (10–10 F/m)

151 (10–10 F/m)
Piezielectric strain coupling, d31 –274 (10–12 m/V)

d33 593 (10–12 m/V)
d15 741 (10–12 m/V)

Elastic compliance (@ constant E), 16.5 (10–12 m2/N)

20.7 (10–12 m2/N)

43.5 (10–12 m2/N)

–4.78(10–12 m2/N)

–8.45 (10–12 m2/N)
Density 7500 (Kg/m3)
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(30)

where Vso is the sensor output in the passive beam (at zero
feedback gain), Veo is the corresponding output of the exter-
nal sensor (at zero feedback gain), and Ve is the instantaneous
output of the external sensor. Thus, (Vso/Veo) is the empirical
calibration factor used to estimate the output of the embed-
ded sensors from the external sensor. The reason for this ap-
proximated approach is due to the limitation in the theoreti-
cal model in accounting for the interactions between sensor
and actuator.

In forced vibration tests, a sweep sinusoidal voltage of am-
plitude of 5 V is generated using a Spectrum Analyzer
(HP 35665A). This signal is amplified to 120 V signal using
a power amplifier (Crown Comp-Tech 400), and applied
to the third pair. The two devices of the third pair are
driven 180° out-of-phase in order to drive the beam in pure
bending.

The frequency response is measured using the Spectrum
Analyzer which compares the voltage input to the devices of
the third pair, with the output voltage measured at the exter-
nal attached PZT sensor, as shown in Figure 9. Experimental
frequency response data is recorded by the digital Spectrum
Analyzer and then downloaded to a computer for analysis
and post-processing.

Time response is measured by connecting the external
PZT to an oscilloscope. The tip of the beam is given some
fixed initial displacement (ro) and the beam is allowed to vi-
brate under active vibration control. The time response of the
active beam is captured by an oscilloscope (Nicolet 320 Dig-
ital Oscilloscope).

In active stiffening, the electrical field applied to the actua-
tor is proportional to the sensor voltage. The electrical field
supplied to each actuator is 180° phase shifted with respect to
the electrical field generated by the sensor of that pair. In
principle, it is possible to use sensors of the first two pairs as
additional actuators. However, because of mechanical inter-
action effects, only one device of each pair is used as an actu-
ator. Since the model does not account for the mechanical in-
teractions between opposite devices in each pair, using them
simultaneously as actuators would make it difficult to com-
pare experimental results with analytical predictions.

Additional reasons for deviations between experimental
results and analytical predictions are the assumptions made
in the model such as: perfect interfacial bonding condition is
assumed in the model, the rectangular cross-section of the
devices is approximated to be elliptical with equivalent areas
in the analytical model, the electrical losses in the system are
ignored in the model, the finite dimensions of the host in the z
direction are considered very approximately in the
eigenstrain analysis, mechanical interactions between the
embedded devices are ignored in the model, the sensor out-
puts are estimated in the experiment from the external PZT
sensor, and the nonlinearities in the material properties of the

devices have been ignored. Because of the difficulties in ac-
counting for these approximations explicitly, a scalar cali-
bration coefficient (k) is assumed in the model to simulate the
effects of the above simplifications in the model. One can es-
timate the value of the coefficient based on some simple ex-
perimentation. The beam is given a known tip displacement
and the voltage output of an embedded sensor is recorded.
Sensor voltage output is compared with the analytical predic-
tion. The experimental value is 0.75 of the analytical predic-
tion. This implies 25% loss at the sensor; in other words, the
sensor calibration coefficient (k) is 0.75. Or the overall elec-
tro-mechanical efficiency of the embedded devices is 75% in
the static case.

Figure 10 shows a comparison between the experimental
and the analytical results. The x-axis is the feedback gain (G)
whereas the vertical axis is the normalized fundamental fre-
quency. The fundamental frequency is normalized with re-
spect to that of the passive beam (G = 0). Experimental values
of the first frequency are obtained using frequency response
tests. Note that experimental results for one (m = 1) and two
(m = 2) active pairs have the same trend as the analytical pre-
diction.

The calibration factor (k) in the model represents the
losses in energy transformation at the sensors and actuators.
In other words, the electrical energy generated at sensors due
to the direct effect is only 75% of the total available from the
applied mechanical energy. On the other hand, only 75% of
the total mechanical energy available from the applied elec-
trical energy at actuators is transferred to the host by the con-
verse effect. Therefore, since sensors and actuators have the
same working environment, their “efficiency” is assumed
to be 75%. Figure 10 shows comparisons between experi-
mental results and model predictions, assuming “losses” of
25%.

The comparison between the experimental results and
model predictions in time domain is given in Figure 11. The
y-axis is the normalized external sensor output measured ex-
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Figure 10. Comparison between analytical and experimental active
stiffening, assuming losses in the system.
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perimentally or predicted analytically. The solid line repre-
sents the experimental response of the beam, whereas the
dashed line gives the analytical response of the beam. The re-
sponse is given for two active pairs (m = 2) at G = 66. Again,
the ability to achieve good agreement between experimen-
tally measured and analytically predicted response with use
of only one fixed scalar calibration factor (k = 0.75), illus-
trates the ability of the eigenstrain method to represent the
basic mechanics of the active structure with embedded mini-
devices.

It is worth mentioning in closing that the small change in
the dynamic response is due to the small volume fraction of
the devices, which is only 0.22% for each actuator.

CONCLUSIONS

Analytical predictions based on Hamilton’s principle
are compared with experimental data for active stiffening
of a cantilever beam with embedded mini-actuators. The
mechanical interactions between the host and the devices
are modeled using an eigenstrain method. Active stiffen-
ing of the active beam was achieved experimentally by us-
ing constant-gain position-feedback control. This pa-
per demonstrates the ability of eigenstrain methods to
successfully model active structures containing mini-
devices.
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APPENDIX

Eshelby’s fourth-order concentration tensor Sijkl for uni-
form field is given as,

(A1)

where ν is Poisson’ ratio of the matrix, δij is Kronecker delta,
ai are the semi axes of the ellipsoid inclusion. Integrals Ii and
Iij are defined as follow:

(A2)

(A3)

where ∆(s) is defined as,

(A4)

and λ is the largest positive root of

(A5)

for exterior points (in the host), and λ = 0 for interior points
(inside inclusion). The above I-integrals can be expressed in
terms of standard elliptic integrals (Moschovidis, 1975).
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